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DNA vaccines: a potentially universal vaccine
platform, but lacking potency

stromal cell
CD8+ T
cells

plasmid DNA encoding vaccine \
antigen

antigen presenting

« Naked DNA shown in 1990 to transfect and vaccinate small
animals (mice), but much less efficient in non-human primates

and humans

» Synthetic transfection agents (lipids, polymers) to date either too
toxic or too inefficient .



The current golden standard — Iin vivo electroporation

Electroporation:
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The current golden standard — In vivo electroporation
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MRNA-Based Vaccines

The underlying principle is delivery of a transcript that encodes one or more immunogens into the
host cell cytoplasm, where translation generates immunogenic proteins that are subsequently
sequestered intracellularly, incorporated into the cell membrane, or secreted.

The mRNA is generated by transcribing a DNA template synthesized once the genetic
sequence encoding the immunogen is known and disseminated globally.

Advantages: high safety, easy and fast manufacturing compared to more conventional approaches,
less expensive, easy to be modified, much less possible for the mRNA to integrate into the
genome than a DNA-based vaccine.

Disadvantages: a delivery system is necessary, difficulty in storage and transportation, others to be
determined

Vaccines 2021, 9, 390. https:// doi.org/10.3390/vaccines9040390



MRNA-Based Vaccines
(MRNA modification)

The 5’ 7-methylguanosine (m’G) cap blocks recognition
by the cytoplasmic RNA sensor, RNA helicases retinoic
acid-inducible gene | (RIG-I), suppresses exonuclease-
mediated degradation, recruits translation initiation
factors, and promotes efficient translation

mRNA Vaccine modifications:
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The poly(A) tail and its length are critical for
translation and protection of the mRNA
vaccine construct from degradation

nonreplicating (a) 5 m'Gcap— & UTR Immunogen 3'UTR =AAAAAA 2.2 kb

(a)

self-replicating (b) 5 m'Gcap— S UIR RDRP complex

Immunogen 3 UTR —AAAAAA 9.3 kb

(b)

RNA-dependent RNA polymerase (RDRP) complex required for self-amplification
(often derived from alphaviruses, e.g., Sindbis virus)

Vaccines 2021, 9, 390. https:// doi.org/10.3390/vaccines9040390



Self-replicating mRNA vaccines and an alternative

Self-amplification of alphavirus replicon RNA:
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strong intrinsic adjuvant activity of self-replicating mRNA
contributes to its higher immunogenicity at lower doses
compared to nonreplicating mRNA constructs

Geall et al. PNAS 2012

An alternative: Circular RNAs (circRNAs) are a class of
single-stranded RNAs with a covalently closed loop
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Delivery of mRNA vaccines

Electroporation
DCs
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MRNA vaccines against COVID-19

The Pfizer-BioNTech COVID-19 vaccine has not been approved or licensed by the U.S. Food and Drug
Administration (FDA), but has been authorized for emergency use by FDA under an Emergency Use
Authorization (EUA) to prevent Coronavirus Disease 2019 (COVID-19) for use in individuals 12 years of age
and older. https://www.pfizer.com/news/hot-topics/the_facts_about_pfizer_and_biontech_s_covid_19_vaccine
The ingredients are mRNA, lipids ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate), 2
[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide, 1,2-Distearoyl-sn-glycero-3-phosphocholine, and
cholesterol), potassium chloride, monobasic potassium phosphate, sodium chloride, dibasic sodium phosphate
dihydrate, and sucrose.

Ionizable cationic lipid Helper lipids PEG-lipid n~45 (PEG2000)
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Fig. 6. Lipids used in the mRNA-LNP COVID-19 vaccines BNT162b2 (Comirnaty) and mRNA-1273. 10



Lipid nanoparticles (LNPs)

nucleases 60—100 nm in size
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Comparison of the mRNA-1273 vaccines by Moderna, BNT162b2/Comirnaty by BioNTech/Pfizer and CVnCoV by CureVac

Information about the three mRNA-LNP drug products that are presently used or in clinical phase IIT trials. For comparison reasons, drug product information for
Onpattro (an siRNA-LNP drug product) has been added.

Category siRNA Pfizer-BioNTech mRNA vaccine Moderna mRNA vaccine Curevac mRNA
vaccine
candidate

Name product Onpattro * BNT162b2; Comirnaty mRNA-1273 CVnCoV

patisiran

mRNA dose; route of 0.3 mg/kg, intravenous 30 pg; intramuscular 100 pg; intramuscular 12 pg;

administration intramuscular

Lipid nanopazrticle
components

Molar lipid ratios (%)
ionizable cationic

lipid : neutral lipid :

cholesterol : PEG-

ylated lipid
Molar N/P ratios”
Buffer

Other excipients

DLin-MC3-DMA: (6Z,9Z,287,31Z)-
heptatriaconta-6,9,28,31-tetraen-
19-yl-4-(dimethylamino)
butanoate
1,2-Distearoyl-sn-glycero-3-
phosphocholine (DSPC)
PEG2000-DMG = Alpha-(3'-{[1,2-
di(myristyloxy)propanoxy]
carbonylamino}propyl)-
w-methoxy, polyoxyethylene
Cholesterol

50:10:38.5:1.5

o
]

Potassium phosphate, monobasic,
anhydrous

Sodium phosphate, dibasic,
heptahydrate

pH -~ 7

Sodium chloride

Water for injection

0.43 mg ALC-0315 = (4-
hydroxybutyl) azanediyl)bis
(hexane-6,1-diyl)bis(2-
hexyldecanoate)

0.05 mg ALC-0159 = 2-
[(polyethylene glycol)-2000]-N,N
ditetradecylacetamide

0.09 mg 1,2-Distearoyl-sn-glycero-
3-phosphocholine (DSPC)

0.2 mg Cholesterol

46.5:9.4:42.7:1.6

6

0.01 mg Potassium dihydrogen
phosphate

0.07 mg Disodium hydrogen
phosphate dihydrate pH 7-8

0.01 mg Potassium chloride
0.36 mg Sodium chloride

6 mg Sucrose

Water for injection

SM-102 (heptadecan-9-yl 8-((2-hydroxyethyl) (6-
oxo-6-(undecyloxy) hexyl) amino) octanoate}
PEG2000-DMG = 1-
monomethoxypolyethyleneglycol-2,3-
dimyristylglycerol with polyethylene glycol of
average molecular weight 2000
1,2-Distearoyl-sn-glycero-3 phosphocholine (DSPC)
Cholesterol

50:10:38.5:1.5

6°
Tris (tromethamine)
pH 7-8

Sodium acetate
Sucrose
Water for injection

Cationic lipid
(Acuitas
Therapeutics)
Phospholipid
Cholesterol
PEG-lipid
conjugate

50:10:38.5:1.5

pH

Saline

*NDA 210922 ONPATTRO (patisiran) Lipid Complex Injection; Addendum to Drug Product Quality Review (FDA, 2017).

a

b Estimate.

N = ionizable cationic lipid (nitrogen), P = nucleotide (phosphate).
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Cellular fates of mRNA vaccines

Lipid Nanoparticle + mRNA Vaccine Complex | Muscle cell or antigen presenting cell
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Preventative (prophylactic) cancer vaccines?

« Afirst target: virus-induced cancers- 20% of all cancers
» Gardasil and cervarix: two example prophylactic cancer vaccines blocking HPV-induced
cervical cancer
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First preventative non-viral cancer vaccine trial
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Incidence of autoimmune diseases IS on the rise
INn the world
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Tolerogenic vaccination for antigen-specific
modulation
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Antigen-specific tolerogenic vaccines

multiple sclerosis (MS)

Direct intra-lymph

node (LN) injection  j;
of particles:

Polymer particles
encapsulating _
tolerogenic cues ' e s

| 1| Local deposition in LN
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Microparticles containing:
* a peptide fragment of myelin oligodendrocyte glycoprotein (MOG)
* rapamycin (Rapa): a regulatory signal

18
Cell Reports 16, 2940-2952 (2016).



Images of the cortical ridge of LNS
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A model of MS: experimental autoimmune
encephalomyelitis (EAE)
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Erythrocyte binding tolerogenic vaccines

* Antigens derived from apoptotic cell
debris can drive clonal T-cell deletion
or anergy

* antigens chemically coupled ex vivo to
apoptotic cell surfaces have been
shown correspondingly to induce
tolerance on infusion

* alarge number of erythrocytes become
apoptotic (eryptotic) and are cleared
each day

Proceedings of the National Academy
of Sciences 110, E60—E68 (2013).

ERY1-OVA binds the equatorial periphery of
mouse erythrocytes
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Erythrocyte-binding antigen formulations enhance cross-
priming and apoptotic fate deletional proliferation of
antigen-specific OTlI CD8+ T cells in vivo.
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ANOKION!

Resulting In a spin-off from EPFL

Anokion harnesses the power of
natural iImmune equilibrium to
develop solutions for antigen-
specific Immune tolerance

http://anokion.com/
23
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